Correction for Köster et al., Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA.

نویسندگان

  • Stefan Köster
  • Sandeep Upadhyay
  • Pallavi Chandra
  • Kadamba Papavinasasundaram
  • Guozhe Yang
  • Amir Hassan
  • Steven J Grigsby
  • Ekansh Mittal
  • Heidi S Park
  • Victoria Jones
  • Fong-Fu Hsu
  • Mary Jackson
  • Christopher M Sassetti
  • Jennifer A Philips
چکیده

Mycobacterium tuberculosis' success as a pathogen comes from its ability to evade degradation by macrophages. Normally macrophages clear microorganisms that activate pathogen-recognition receptors (PRRs) through a lysosomal-trafficking pathway called "LC3-associated phagocytosis" (LAP). Although Mtuberculosis activates numerous PRRs, for reasons that are poorly understood LAP does not substantially contribute to Mtuberculosis control. LAP depends upon reactive oxygen species (ROS) generated by NADPH oxidase, but Mtuberculosis fails to generate a robust oxidative response. Here, we show that CpsA, a LytR-CpsA-Psr (LCP) domain-containing protein, is required for Mtuberculosis to evade killing by NADPH oxidase and LAP. Unlike phagosomes containing wild-type bacilli, phagosomes containing the ΔcpsA mutant recruited NADPH oxidase, produced ROS, associated with LC3, and matured into antibacterial lysosomes. Moreover, CpsA was sufficient to impair NADPH oxidase recruitment to fungal particles that are normally cleared by LAP. Intracellular survival of the ΔcpsA mutant was largely restored in macrophages missing LAP components (Nox2, Rubicon, Beclin, Atg5, Atg7, or Atg16L1) but not in macrophages defective in a related, canonical autophagy pathway (Atg14, Ulk1, or cGAS). The ΔcpsA mutant was highly impaired in vivo, and its growth was partially restored in mice deficient in NADPH oxidase, Atg5, or Atg7, demonstrating that CpsA makes a significant contribution to the resistance of Mtuberculosis to NADPH oxidase and LC3 trafficking in vivo. Overall, our findings reveal an essential role of CpsA in innate immune evasion and suggest that LCP proteins have functions beyond their previously known role in cell-wall metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection

Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compar...

متن کامل

Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation.

Complement receptor type 3 (CR3) was initially described as an opsonic receptor. Subsequently, CR3-mediated lectin-sugar recognition mechanisms have been shown to play a major role in the nonopsonic phagocytosis of several pathogens, among them Mycobacterium tuberculosis. Little is known about the binding and signal transduction mechanisms operating during nonopsonic ingestion through CR3 of di...

متن کامل

Wedelolactone from Vietnamese Eclipta prostrata (L.) L. protected zymosan-induced shock in mice

Wedelolactone is known to have biological activities such as anti-inflammation hepatitis, anti-hepatotoxic activity, and trypsin inhibitory effect. However, up to date, there has not been studied deeply in the role of wedelolactone for zymosan-induced signaling pathways in the process of regulating the excessive inflammatory responses in host. Here, we demonstrated that wedelolactone plays an e...

متن کامل

Wedelolactone from Vietnamese Eclipta prostrata (L.) L. protected zymosan-induced shock in mice

Wedelolactone is known to have biological activities such as anti-inflammation hepatitis, anti-hepatotoxic activity, and trypsin inhibitory effect. However, up to date, there has not been studied deeply in the role of wedelolactone for zymosan-induced signaling pathways in the process of regulating the excessive inflammatory responses in host. Here, we demonstrated that wedelolactone plays an e...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 45  شماره 

صفحات  -

تاریخ انتشار 2017